Characterizing Na+/K+ Permeation Rates through the Bacterial NavAb Sodium Channel
نویسندگان
چکیده
منابع مشابه
Na+/Ca2+ selectivity in the bacterial voltage-gated sodium channel NavAb
The recent publication of a number of high resolution bacterial voltage-gated sodium channel structures has opened the door for the mechanisms employed by these channels to distinguish between ions to be elucidated. The way these channels select between Na(+) and K(+) has been investigated in computational studies, but the selectivity for Na(+) over Ca(2+) has not yet been studied in this way. ...
متن کاملA gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb
Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain th...
متن کاملArchitecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.
The X-ray structure of the bacterial sodium channel NavAb provides a new template for the study of sodium and calcium channels. Unlike potassium channels, NavAb contains P2 helices in the outer-pore region. Because the sequence similarity between eukaryotic and prokaryotic sodium channels in this region is poor, the structural similarity is unclear. We analyzed it by using experimental data on ...
متن کاملCatalysis of Na+ permeation in the bacterial sodium channel Na(V)Ab.
Determination of a high-resolution 3D structure of voltage-gated sodium channel Na(V)Ab opens the way to elucidating the mechanism of ion conductance and selectivity. To examine permeation of Na(+) through the selectivity filter of the channel, we performed large-scale molecular dynamics simulations of Na(V)Ab in an explicit, hydrated lipid bilayer at 0 mV in 150 mM NaCl, for a total simulation...
متن کاملPermeation through the CFTR chloride channel.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein forms a Cl(-) channel found in the plasma membranes of many epithelial cells, including those of the kidney, gut and conducting airways. Mutation of the gene encoding CFTR is the primary defect in cystic fibrosis, a disease that affects approximately 30 000 individuals in the United States alone. Alteration of CFTR function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2014
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2013.11.774